An Analysis of Chaining in Multi-Label Classification
نویسندگان
چکیده
The idea of classifier chains has recently been introduced as a promising technique for multi-label classification. However, despite being intuitively appealing and showing strong performance in empirical studies, still very little is known about the main principles underlying this type of method. In this paper, we provide a detailed probabilistic analysis of classifier chains from a risk minimization perspective, thereby helping to gain a better understanding of this approach. As a main result, we clarify that the original chaining method seeks to approximate the joint mode of the conditional distribution of label vectors in a greedy manner. As a result of a theoretical regret analysis, we conclude that this approach can perform quite poorly in terms of subset 0/1 loss. Therefore, we present an enhanced inference procedure for which the worst-case regret can be upper-bounded far more tightly. In addition, we show that a probabilistic variant of chaining, which can be utilized for any loss function, becomes tractable by using Monte Carlo sampling. Finally, we present experimental results confirming the validity of our theoretical findings.
منابع مشابه
Exploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملDouble Layer Based Multi-label Classifier Chain
In multi-label learning, each training example is associated with a set of labels and the task is to predict the proper label set for each unseen instance. The widely known binary relevance method (BR) for multi-label classification considers each label as an independent binary problem. It is ignored in the literature due to inadequacy of not considering label correlations. In this paper, we pr...
متن کاملDecomposition and Analysis of Driving Forces of GHG Emissions and Emission Reduction Potentials in Iran
Climate change cannot control unless by reduction of GHG emissions to secure level, therefore it is important to identify driving forces and possible scenarios based on targets. In this research, the Logarithmic Mean Divisia Index decomposition approach in combination with Extended Kaya Identity (EKI) are applied to investigate five factors could affect emissions during 1971-2012 in Iran. Thes...
متن کاملMulti-label classification of chronically ill patients with bag of words and supervised dimensionality reduction algorithms
OBJECTIVE This research is motivated by the issue of classifying illnesses of chronically ill patients for decision support in clinical settings. Our main objective is to propose multi-label classification of multivariate time series contained in medical records of chronically ill patients, by means of quantization methods, such as bag of words (BoW), and multi-label classification algorithms. ...
متن کامل